thztools.NoiseResult#
- class thztools.NoiseResult(noise_model, mu, a, eta, fval, hess_inv, err_sigma_alpha, err_sigma_beta, err_sigma_tau, err_mu, err_a, err_eta, diagnostic)[source]#
Dataclass for the output of
noisefit.- Parameters:
- noise_modelNoiseModel
Noise parameters, represented as a
NoiseModelobject.- mundarray, shape (n,)
Signal vector.
- andarray, shape (m,)
Signal amplitude drift vector.
- etandarray, shape (m,)
Signal delay drift vector.
- fvalfloat
Value of optimized NLL cost function.
- hess_invndarray
Inverse Hessian matrix of optimized NLL cost function.
- err_sigma_alpha, err_sigma_beta, err_sigma_taufloat
Estimated uncertainty in the noise model parameters. Set equal to 0.0 when the parameter is fixed.
- err_mundarray
Estimated uncertainty in
mu.- err_andarray
Estimated uncertainty in
a.- err_etandarray
Estimated uncertainty in
eta.- diagnosticscipy.optimize.OptimizeResult
Instance of
scipy.optimize.OptimizeResultreturned byscipy.optimize.minimize. Note that the attributesfun,jac, andhess_invrepresent functions over the internally scaled parameters.
Attributes
noise_model
(NoiseModel) Noise parameters, represented as a
NoiseModelobject.mu
(ndarray, shape (n,)) Signal vector.
a
(ndarray, shape (m,)) Signal amplitude drift vector.
eta
(ndarray, shape (m,)) Signal delay drift vector.
fval
(float) Value of optimized NLL cost function.
hess_inv
(ndarray) Inverse Hessian matrix of optimized NLL cost function.
err_sigma_alpha, err_sigma_beta, err_sigma_tau
(float) Estimated uncertainty in the noise model parameters. Set equal to 0.0 when the parameter is fixed.
err_mu
(ndarray) Estimated uncertainty in
mu.err_a
(ndarray) Estimated uncertainty in
a.err_eta
(ndarray) Estimated uncertainty in
eta.diagnostic
(scipy.optimize.OptimizeResult) Instance of
scipy.optimize.OptimizeResultreturned byscipy.optimize.minimize. Note that the attributesfun,jac, andhess_invrepresent functions over the internally scaled parameters.See also
NoiseModelNoise model class.
noisefitEstimate noise model parameters.