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We analyze the optical pump-probe reflection and transmission coefficients when the photoinduced
response depends nonlinearly on the incident pump intensity. Under these conditions, we expect
the photoconductivity depth profile to change shape as a function of the incident fluence, unlike
the case when the photoinduced response is linear in the incident intensity. We consider common
optical nonlinearities, including photoconductivity saturation and two-photon absorption, and we
derive analytic expressions for the photoconductivity depth profile when one or more is present.
We review the theory of the electromagnetic transmission and reflection coefficients in a stratified
medium, and we derive general expressions for these coefficients for a medium with an arbitrary
photoconductivity depth profile. For several photoconductivity profiles of importance in pump-
probe spectroscopy, we show that the wave equation can be transformed into one of three standard
differential equations—the Bessel equation, the hypergeometric equation, and the Heun equation—
with analytic solutions in terms of their associated special functions. From these solutions, we
derive exact analytic expressions for the optical coefficients in terms of the photoconductivity at the
optical interface, and we discuss their limiting forms in various physical limits. Our results provide
a systematic guide for analyzing pump-probe measurements over a wide range of pump intensities,
and establishes a framework for constraining the systematic uncertainty associated with nonlinear
photoconductivity profile distortion.

I. INTRODUCTION

Optical pump-probe spectroscopy uses ultrafast light
pulses to investigate how solids evolve in response to
optical excitation, enabling the study of dynamics as-
sociated with electronic, magnetic, and lattice degrees
of freedom at their fundamental time scales [1–3]. The
advent of powerful laser sources capable of delivering in-
tense optical pulses has expanded the opportunities for
pump-probe spectroscopy to investigate nonequilibrium
states of matter [4, 5]. However, in these experiments,
the measured optical coefficients, such as the reflection
and transmission amplitudes, represent an averaged re-
sponse over the entire photoexcited region, whereas the
response functions of interest, such as the conductivity or
permittivity, are local properties that can vary both tem-
porally and spatially within the region. Consequently,
we can not use pump-probe measurements to determine
local pump-induced conductivity changes without a the-
oretical model for the photoexcitation depth profile.

A common approach to this problem is to assume that
the pump excitation produces a local response that de-
cays exponentially with depth, as it would in the lin-
ear response regime. While we can justify this assump-
tion when the incident intensity is sufficiently low, it
fails as the intensity increases because optical nonlin-
earity becomes important. (Since photoconductivity is
itself a nonlinear optical phenomenon, unless otherwise
indicated we use the terms nonlinear and nonlinearity
here to refer to the relationship between the local pho-
toconductivity at any point in the medium and the inci-
dent pump power or fluence.) Ignoring this nonlinearity
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can lead to systematic errors in the inferred photocon-
ductivity that can be as large as the response itself [6].
To address this problem, we have developed an analysis
framework that can account for both low-intensity exci-
tation conditions and the nonlinear effects that emerge
at higher pump intensity. It is based on a family of pho-
toexcitation profiles that depend on the incident fluence,
with two additional parameters that define characteris-
tic scales for saturable and two-photon nonlinearities. A
notable feature of this family of profiles is that it sup-
ports analytic solutions to the wave equation in terms of
known special functions. We derive these solutions and
analyze them in detail here. In subsequent work, we will
describe how to use this family of profiles to improve the
systematic uncertainty in pump-probe measurements in
the high-intensity limit.

To motivate our discussion, we note that our interest
in this topic emerged from earlier efforts to determine the
photoinduced conductivity from pump-probe measure-
ments at high pump fluence [6–8]. Initially, we found that
the pump-probe response in insulating cuprates shows ev-
idence of saturation as the pump fluence reaches about
1 mJ/cm2 [7, 8]. This observation prompted us to con-
sider the influence of this nonlinearity on the photoexci-
tation profile [8], which subsequently led us to consider
whether a similar nonlinearity could affect the optical ev-
idence for photoinduced superconductivity [9]. By rean-
alyzing the evidence for photoinduced superconductivity
in K3C60, we found strong evidence that it is distorted
by a saturable nonlinearity [6]. We argued that most of
the optical evidence for photoinduced superconductivity
suffers from the same systematic error. Although our
analysis focused on the example of photoinduced super-
conductivity, we expect similar problems to emerge in
any pump probe experiment at sufficiently high pump
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intensity. This recognition led us to the present work,
where we aim to lay the foundation for an analysis pro-
tocol that can account for nonlinearities more generally.

We discuss how the photoconductivity depends on
depth in the presence of common optical nonlinearities
in Sec. II. This section elaborates on our previously pub-
lished work on saturation and two-photon absorption
(TPA) nonlinearities [6], and it develops an expression
that can account for both nonlinearities simultaneously.
We discuss limiting forms of this expression and relate
its general features to profiles expected for other types
of nonlinearity. In Sec. III, we review the general prob-
lem of solving the Maxwell equations in stratified media.
We discuss common solution methods, and we derive ex-
pressions for the optical coefficients that are valid for an
arbitrary photoconductivity depth profile. This prepares
us for Sec. IV, where we derive exact solutions to the wave
equation for the photoconductivity depth profiles intro-
duced in Sec. II. We also derive exact analytic expressions
for the reflection and transmission amplitudes under a
variety of conditions that are relevant for pump-probe
spectroscopy. We summarize and conclude in Sec. V.

II. MODELS FOR PHOTOCONDUCTIVITY
DEPTH PROFILE

Photoexcitation changes the local conductivity of the
medium by depositing energy, which is then redistributed
across various degrees of freedom within the material. At
low pump intensity, we expect the absorbed energy den-
sity at every location in the sample to be proportional
to the incident pump fluence, and the change in local
conductivity to scale with the absorbed energy density.
However, as the pump intensity increases, nonlinear ef-
fects are likely to emerge in the pump absorption process,
the medium response, or both. In this work, we focus on
two common nonlinearities: one where the pump absorp-
tion is nonlinear due to TPA or excited-state absorption
(ESA), and another where the local conductivity becomes
nonlinear as it saturates with the absorbed energy den-
sity. We consider these two cases individually and we
also consider a third case where we combine these two
nonlinearities.

We start with two important simplifying assumptions.
First, we treat the photoexcited medium as if it were in
a quasiequilibrium steady state, where the photoinduced
changes occur on a timescale longer than the pulse dura-
tion of the probe [2]. This assumption allows us to focus
solely on the spatial variation of the local photoconduc-
tivity and its relationship to the incident pump fluence.
Also, we assume that the characteristic relaxation time of
the material is shorter than any experimental timescale,
in particular the pump-probe delay. This allows us to
derive the optical reflection and transmission coefficients
by treating the photoexcited medium in the quasistatic
limit and assuming a linear interaction with the probe,
even though the underlying photoconductivity response

is fundamentally a nonlinear optical phenomenon [10].
By focusing on these two nonlinearities, TPA and

saturation, our framework extends the more restrictive
conventional analysis to include two of the most com-
mon nonlinearities, while keeping the analysis procedure
tractable. As we show later, these nonlinearities exhibit
contrasting dependencies on fluence, and by combining
them, we develop a model that can describe a wider range
of nonlinearities in the experimental regime. Moreover,
these models can be adapted to account for other types
of nonlinearities, which we will discuss in later sections.

A key advantage of our approach is that the wave equa-
tion corresponding to these nonlinearities, as well as their
combined form, have analytic solutions in terms of known
special functions. As discussed in Sec. III, the standard
approach to determine the optical coefficients of a strati-
fied medium requires the solution for the wave that prop-
agates into the medium. In general, this must be done
numerically, which can require some care if the medium
is absorbing and the forward-propagating wave decays
exponentially into it. However, when exact analytic so-
lutions are available for the medium, we can relate the
optical coefficients directly to the response functions at
the surface, avoiding the need to compute the fields at
any other location.

In the following subsections, we introduce the photo-
conductivity depth profile models that we study in this
paper. For completeness and to establish notation, we
begin our discussion by introducing the linear photocon-
ductivity depth profile in Sec. II A. In Sec. II B, we in-
troduce the saturable photoconductivity depth profile,
where we assume that the pump absorption remains lin-
ear with the pump fluence, but the photoconductivity
saturates with the absorbed energy density. Section II C
focuses on the TPA profile, where the pump absorption
process is nonlinear due to two photon absorption while
the photoconductivity is linear with the absorbed energy
density. In Sec. II D, we introduce the combined profile,
where both the pump absorption and the response are
nonlinear due to TPA and saturation. Finally, in sub-
section Sec. II E, we discuss other common nonlinearities
and relate their behavior to the depth profiles we devel-
oped in earlier sections.

A. Exponential depth profile

As noted earlier, at sufficiently low pump intensity
we can assume that the local conductivity depends lin-
early on the local energy density, E . We express this
mathematically as σ(z, E) = σ̄ + χEE(z), where z is the
depth from the surface, σ̄ is the equilibrium conductivity,
χE = dσ/dE|z=0 is the complex susceptibility of the con-
ductivity to the absorbed energy density at the surface,
and σ, σ̄, and χE all have implicit frequency dependence.
If the nonlinear absorption of the pump beam is weak,
we may assume further that E = E0e−αz, where α is the
pump attenuation coefficient. We may then write σ as a
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function of both z and the incident fluence, F ,

σ(z, F ) = σ̄ + χFFe
−αz, (1)

where χF = limF→0 dσ/dF , which we call the surface
photosusceptibility. Setting z = 0 in Eq. (1), we write
the surface photoconductivity as

∆σs(F ) ≡ σ(z = 0, F )− σ̄ = χFF. (2)

It is important to recognize that σ(z, F ) and ∆σs(F ) are
not a true linear response coefficients, in the sense that
they describe a third-order optical nonlinearity that re-
lates the current density at the surface to both the probe
field amplitude and the pump fluence [10]. By intro-
ducing the third-order surface photosusceptibility χF , we
make this fluence dependence explicit. This quantity has
the added advantage that it retains a well-defined inter-
pretation when σ(z, F ) has a nonlinear dependence on
F , as we discuss below.

B. Saturable profile

As the pump fluence increases, we expect the energy
distribution to change among the different degrees of free-
dom in the system. To estimate of the energy deposited
in the system in a typical experiment, consider a medium
with a 50% absorptance and the pump attenuation length
is 100 nm that is that is photoexcited with an incident
pump fluence of 1 mJ/cm2. The absorbed energy density
is then approximately 0.3 eV/nm3, which is large enough
to expect internal degrees of freedom to saturate. For ex-
ample, in the Heisenberg model of a magnetic system, the
energy absorption is limited by Emax ∝ JS2, where J is
the exchange energy and S is the total spin. In cuprates,
the magnetic degrees of freedom can store a maximum
of about 0.5 eV/nm3 per unit cell, which is comparable
to the 0.3 eV/nm3 in our example. While phonons are
not constrained in the same way, we may expect that
anharmonic coupling will allow a phonon to redistribute
its energy to other degrees of freedom more rapidly as
its energy increases. If a saturating degree of freedom
makes the dominant contribution to the photoconduc-
tivity, we expect the photoconductivity to saturate as
the fluence increases. This is observed in a variety of
experiments [8, 11–15].

We model this behavior by first expressing the photo-
conductivity as a function of the energy density,

∆σ(z, E ; Esat) = χE
E(z, F )

1 + E(z, F )/Esat
, (3)

where Esat is the energy density at which ∆σ saturates
and χE = limE→0 dσs/dE , the susceptibility of the sur-
face photoconductivity to the absorbed energy density.
Assuming that the pump absorption remains linear with
fluence, E ∝ F exp(−αz), and the saturable conductivity
depth profile is

σ(z, F ;Fsat) = σ̄ + χFFsat
(F/Fsat) e

−αz

1 + (F/Fsat) e−αz
. (4)

0 1 2 3 4 5
Depth (units of )

0

1

|
/

s|

TPA Sat
f = 0.1
f = 1
f = 10

Exp

FIG. 1. Normalized photoconductivity of linear and nonlinear
media as a function of depth, in units of the pump penetra-
tion depth Λ = 1/α. Markers on each curve indicate the
1/e-depth. The photoexcition profile narrows with increasing
fluence F = FTPAf in a medium with a TPA nonlinearity and
broadens with increasing fluence F = Fsatf in a medium with
a saturable nonlinearity (Sat). The depth profile for a linear
medium (Exp) is independent of fluence.

Here, Fsat = Esat/[α(1−Rp)], where Rp is the pump
reflection coefficient, is a parameter that sets the flu-
ence scale of saturation. As F/Fsat → 0, we recover
the exponential model that describes the local photo-
conductivity in the linear regime. As F/Fsat → ∞, the
surface photoconductivity approaches the limiting value
∆σsat = χFFsat. Setting z = 0, the surface photocon-
ductivity for a saturable depth profile has the form

σs(F ;Fsat) = σ̄ + χFFsat
F/Fsat

1 + F/Fsat
, (5)

which exhibits a sublinear relationship with the pump
fluence.

The orange curves in Fig. (1) show ∆σ(z, F ;Fsat) given
by Eq. (4) for different values of pump fluence, with each
curve normalized to its value at the surface. The blue
curve shows the exponential photoconductivity depth
profile given by Eq. (1), and the violet curves show the
photoconductivity depth profile for a TPA nonlinearity,
which will be discussed in detail in the Sec. II C. While
the functional form of the exponential model is indepen-
dent of the fluence, the shape of the saturable profile
varies strongly with it. As the fluence increases, the lo-
cal conductivity saturates more quickly at the surface
than in the interior, where the absorbed energy density
is lower. This causes the profile to broaden, as the region
of saturated photoconductivity extends deeper into the
material.
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C. TPA profile

Unlike the saturable profile, the TPA profile becomes
shallower with increasing fluence, as shown in Fig. 1.
This happens because as the fluence increases, the likeli-
hood of carrier excitation is higher at the surface, where
the energy is absorbed faster before it can penetrate
deeper into the medium. This confines the effective re-
gion of excitation more tightly to the surface.

To derive the TPA photoconductivity depth profile,
we begin by calculating the absorbed energy density in
a TPA process. During a TPA process, an electron is
excited from the ground state via the simultaneous ab-
sorption of two pump photons [16]. The spatial variation
of the pump intensity, which accounts for both the linear
absorption and TPA, can be modeled using the differen-
tial equation

dI

dz
= −αI − βI2, (6)

where β is the TPA coefficient. The resulting solution
for the pump intensity is

I(z, t) =
Is(t)e

−αz

1 + βIs/α (1− e−αz)
, (7)

where Is(t) = I(z = 0+, t). Assuming a constant pump
illumination across the probe surface and a rectangular
temporal profile with pulse width τp, the absorbed energy
density is

E(z, F ) = −
∫ τp/2

−τp/2

dt
dI

dz

= (1−Rp)αFTPA
F/FTPA(1 + F/FTPA)e

−αz

[1 + F/FTPA(1− e−αz)]
2 ,

(8)

where FTPA = (ατp/β)/(1−Rp) represents the charac-
teristic fluence scale for the onset of the TPA process.
Assuming that the photoconductivity is linear in the ab-
sorbed energy density, ∆σ ∝ E(z), we obtain

σ(z, F ;FTPA) = σ̄ + χFFTPA
(F/FTPA)( 1 + F/FTPA)e

−αz

[1 + F/FTPA(1− e−αz)]
2 . (9)

Setting z = 0 in Eq. (9), we obtain the surface photo-
conductivity,

∆σs(F ;FTPA)=χFFTPA(F/FTPA)(1+F/FTPA) . (10)

As with the saturable profile, we can define a
characteristic photoconductivity scale in Eq. (10),
∆σTPA = χFFTPA, although its significance is differ-
ent. When F ≪ FTPA, the surface photoconduc-
tivity is approximately linear in fluence, with ∆σs ≈
χFF . As F increases, this dependence crosses over
to ∆σs ≈ χFF

2/FTPA, rises to ∆σs = 2∆σTPA at F =
FTPA, and diverges as F → ∞. Time-resolved THz mea-

surements in ZnO show a qualitatively similar depen-
dence of the carrier density on fluence for blue excitation
wavelengths [17].

D. Combined saturable-TPA profile

In many practical situations, we expect both of the
nonlinearities described in Sec. II B and Sec. II C to be
relevant. To describe this, we substitute E in Eq. (8)
into the expression for ∆σ in Eq. (3), we derive the local
photoconductivity for the combined profile as

σ(z, F ;Fsat, FTPA) = σ̄ + χFFsat
(F/Fsat) (1 + F/FTPA) e

−αz

[1 + (F/FTPA) (1− e−αz)]
2
+ (F/Fsat) (1 + F/FTPA) e−αz

, (11)

which is now described by the two free parameters Fsat
and FTPA. Note that this profile has the same character-
istic scale for the photoconductivity, ∆σsat = χFFsat, as

the saturable profile in Eq. (4), which cuts off the diver-
gence that occurs in Eq. (9) as F → ∞. Setting z = 0,
the surface photoconductivity associated with Eq. (11) is

∆σs(F ;Fsat, FTPA) = χFFsat
(F/Fsat) (1 + F/FTPA)

1 + (F/Fsat) (1 + F/FTPA)
. (12)

Equation (12) describes a two-parameter family of photoconductivity profiles that can now describe both
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FTPA = 0.01Fsat

FTPA = 0.1Fsat

FTPA = 1Fsat

FTPA = 10Fsat

FTPA

FIG. 2. Normalized photoconductivity as a function of depth
for the combined profile at F = 10Fsat for different values of
FTPA. Markers on each curve indicate the 1/e-depth.

the sublinear fluence dependence of the saturable pro-
file and superlinear dependence of the TPA profile. Fig-
ure 2 shows ∆σs(F ;Fsat, FTPA) for different ratios of
FTPA/Fsat, with each curve normalized to its value at
the surface. The depth profiles show opposing trends at
the two limits of FTPA/Fsat ratios, approaching the sat-
urable profile as FTPA/Fsat → 0 and the TPA profile as
FTPA/Fsat → ∞. In the limit FTPA → 0 (not shown),
the photoconductivity drops discontinuously from ∆σ =
∆σsat at the surface to zero just inside the medium.

E. Other profiles with nonlinear fluence
dependence

As we have described previously [6], we can use the
profiles described in Secs. II B–II D to gain insight into
the behavior expected with other nonlinearities, which we
review briefly here. In Sec. II E 1, we show that Eq. (4)
can be extended to the case of a conductor in which pho-
toexcitation induces a saturable change in the carrier mo-
mentum relaxation rate. In Sec. II E 2, we discuss how
heating can induce changes that are qualitatively similar
to those described by Eq. (4). In Sec. II E 3, we discuss
the near-equivalence of Eq. (9) and the profile obtained
for ESA.

1. Saturable momentum relaxation rate

To derive Eq. (4), we assumed a saturable dependence
of ∆σ on F . Here, we assume instead that the local car-
rier momentum relaxation rate of a conducting medium
has an analogous dependence, as has been observed, for
example, in high-resistivity silicon [15]. We describe the

local photoconductivity using a Drude-Lorentz model,

σ(ω, z, F ;Fγ) =
ϵ0ω

2
p

γ(z, F )− iω
+ σb(ω), (13)

where ωp is the plasma frequency of the mobile carriers,
σb(ω) is the conductivity associated with bound charge,
and the momentum relaxation rate γ saturates with flu-
ence at the characteristic scale Fγ ,

γ(z, F ;Fγ) = γ̄ +∆γ
(F/Fγ)e

−αz

1 + (F/Fγ)e−αz
. (14)

Here, γ̄ is the equilibrium relaxation rate and the satu-
rated change in this rate is ∆γ = γsat − γ̄, where γsat is
the saturated rate. Substituting Eq. (14) into Eq. (13),
we can write the changes in the local photoconductivity
as

∆σ(ω, z, F ;Fγ) =
ϵ0ω

2
p

γ̄ − iω

γ̄ − γsat

γsat − iω

ñ

1 + ñ
, (15)

where

ñ = (F/Fγ)
γ̄ − γsat

γsat − iω
e−αz. (16)

With the substitutions

ϵ0ω
2
p

γ̄ − iω

γ̄ − γsat

γsat − iω
→ χFFsat, Fγ

γsat − iω

γ̄ − γsat
→ Fsat, (17)

we recover Eq. (4), so despite the differences in the un-
derlying physical models, mathematically, these profiles
are equivalent.

2. Heating-induced nonlinearity

Heating is one of the most commonly considered non-
linearities in pump-probe spectroscopy. In this case, the
energy deposited via photoexcitation raises the local tem-
perature of the medium, which will typically cause the
photoconductivity to show a sublinear dependence on
fluence [13, 14, 18]. This can be understood within the
Debye model. If the specific heat has the usual phonon
dependence, Cv ∝ T 3, then the temperature change as-
sociated with a given E will be ∆T ∝ E1/4. Assuming
∆σ ∝ ∆T , this yields ∆σ(F ) ∝ F 1/4. Although this does
not saturate with F as Eq. (4) does, the dependence is
still strongly sublinear, so the behavior over any finite
fluence range will be qualitatively similar.

3. ESA and saturable absorption

Finally, we consider the nonlinearities due to ESA and
saturable absorption (SA). Both nonlinearities are de-
scribed by the differential equation [19]

dF

dz
= −αF − γF 2, (18)
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where γ represents the ESA coefficient when γ > 0 and
the SA coefficient when γ < 0. The form of this equa-
tion is identical to Eq. (6) for TPA, but for the time-
averaged fluence instead of the instantaneous intensity.
Consequently, the photoconductivity profile in a medium
with an ESA or SA nonlinearity will also be described by
Eq. (9), but with different expressions for FTPA.

III. GENERAL FORMALISM FOR THE
OPTICAL COEFFICIENTS

To derive the optical reflection and transmission coef-
ficients for the photoconductivity profiles in Sec. II, we
turn to the theory of electromagnetic waves in strati-
fied media [20–24]. Although this is an old and well-
developed topic in optics, we review it here for complete-
ness, to establish common notation, and to comment on
aspects of the problem that are important for the solu-
tions that we give in Sec. IV.

A. The Maxwell equations in a stratified medium

Following Born and Wolf [20], we consider a monochro-
matic wave with angular frequency ω traveling in the
yz-plane through a stratified medium with relative
permittivity ϵr(z) = ϵ(z)/ϵ0 and relative permeability
µr(z) = µ(z)/µ0, as shown in Fig. 3. The s-polarized
(TE) and p-polarized (TM) fields may be expressed in
terms of the dimensionless functions Us, Vs, Up and Vp,

Ex = EUs(z)e
iβk0y, Z0Hy = EVs(z)e

iβk0y,

Z0Hz = −βEUs(z)

µr(z)
eiβk0y;

(19)

Z0Hx = EUp(z)e
iβk0y, Ey = −EVp(z)e

iβk0y,

Ez = βE
Up(z)

ϵr(z)
eiβk0y.

(20)

where k0 = ω/c, Z0 is the impedance of free space, E is a
characteristic field scale, and β is a constant that deter-
mines the propagation direction. For a wave traveling in
a medium with a local refractive index n =

√
ϵrµr at an

angle θ with respect to the z-axis, β = n sin θ.
Substituting Eq. (19) and Eq. (20) into the Maxwell

curl equations, we obtain two systems of first-order equa-
tions governing electromagnetic wave propagation in the
medium,

d

dz

[
Us
Vs

]
= ik0

[
0 µr

ϵr − β2/µr 0

] [
Us
Vs

]
; (21)

d

dz

[
Up
Vp

]
= ik0

[
0 ϵr

µr − β2/ϵr 0

] [
Up
Vp

]
. (22)

In the limit as z → ∞, where the perturbation vanishes,

ẑ

ŷ

x̂

f(z)

z
ϵ1, µ1 ϵ(z), µ(z)

k̂i

êi∥

êi⊥

k̂r êr∥

êr⊥
k̂t(z)

êt∥(z)

êt⊥

FIG. 3. Coordinate systems for reflection and transmission of
an electromagnetic wave incident on a stratified medium.

these ODEs yield the harmonic solutions[
Us
Vs

]
= A+

[
1

η/µr

]
eiηk0z +A−

[
1

−η/µr

]
e−iηk0z; (23)[

Up
Vp

]
= A+

[
1
η/ϵr

]
eiηk0z +A−

[
1

−η/ϵr

]
e−iηk0z, (24)

where η2 = ϵrµr − β2 and A+ and A− are the complex
amplitudes for waves travelling in the forward and back-
ward directions, respectively. The first-order ODEs in
Eqs (21) and (22) can be written as second-order ODEs
by eliminating Vs and Vp,

d2Us

dz2
+ k20(µrϵr − β2)Us = 0; (25)

d2Up

dz2
+ k20(µrϵr − β2)Up = 0. (26)

B. Reflection and transmission coefficients

Now consider a stratified half-space, z ≥ 0, with
light incident at an angle θ1 from a homoge-
neous medium with permittivity ϵ1, permeability
µ1, refractive index n1 = c

√
ϵ1µ1, and characteristic

impedance Z1 =
√
µ1/ϵ1. Phase continuity requires that

β = n1 sin θ1 remains constant across the boundary, so if
we define θ2 to be the angle that the transmitted wave
makes with the z-axis at z = 0, β =

√
ϵr(0)µr(0) sin θ2.

It is also useful to define the complex field ratios

Φs(z) =
Vs

Us
=

1

ik0µr

U ′
s

Us
=

1

ik0µr

d lnUs

dz
; (27)

Φp(z) =
Vp

Up
=

1

ik0ϵr

U ′
p

Up
=

1

ik0ϵr

d lnUp

dz
. (28)
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Applying the boundary condition that the tangential
components of the electric field and magnetic field re-
main continuous across the interface, we can express the
reflection and transmission coefficients at the boundary,
z = 0, as [20]

rs =
Z0 cos θ1 − Z1Φs(0)

Z0 cos θ1 + Z1Φs(0)
, (29)

ts =
2Z0 cos θ1

Z0 cos θ1 + Z1Φs(0)
; (30)

rp =
Z1 cos θ1 − Z0Φp(0)

Z1 cos θ1 + Z0Φp(0)
, (31)

and

tp =
cos θ1
cos θ2

2Z0Φp(0)

Z1 cos θ1 + Z0Φp(0)
. (32)

Using Eqs. (30) and (32), we can calculate the exact ex-
pressions for the reflection amplitude and the transmis-
sion for a given ϵr(z) using the forward-travelling solu-
tions to the wave equation evaluated at the interface,
z = 0.

Following Vakhnenko and Strizhevskii [25], it is useful
to express the reflection and transmission amplitudes in
terms of the perturbation parameter Σ,

r =
r̄ − Σ

1 + Σ
; (33)

t =
t̄

1 + Σ
, (34)

where r̄ and t̄ are the reflection and transmission am-
plitudes of an unperturbed homogeneous medium with
permittivity ϵ2 [25]. Expressing the perturbed co-
efficients this way has the important advantage that
limΣ→∞ r = 1. We have also found that it provides
smaller approximation errors than a more conventional
perturbative series [24].

We can now write Σ for both polarizations in terms of
the complex field ratios in Eq. (27) and Eq. (28):

Σs =
Z1

Z0

Z̄2Φs(0)− Z0cosθ̄2
Z̄2cosθ1 + Z1cosθ̄2

; (35)

Σp =
Z̄2 cos θ2 − Z0Φp(0)

Z1 cos θ1 + Z̄2 cos θ̄2
, (36)

where Z̄2 and θ̄2 are the equilibrium impedance and
transmission angle, respectively. These expressions en-
able us to compute the perturbation parameter if we
know the fields at the surface. In Sec. III C, below, we
discuss methods for determining these fields.

C. Solutions to the Maxwell equations

For an arbitrary ϵr(z), one typically uses numerical
methods to solve Eqs. (21) and (22) to determine the

field ratios Φs and Φp, respectively, at the interface. A
common approach is to use the transfer matrix method,
where the inhomogeneously perturbed medium is treated
as a series of homogeneous layers with constant permit-
tivity [20, 26]. Alternatively, one can use the Runge-
Kutta or other methods to find the solution with a stan-
dard ODE solver. In both approaches, an initial con-
dition for the fields must be set at a location z = zi
where the perturbation is small, then back-propagated
to the interface at z = 0. The fields at zi correspond
to the forward-traveling harmonic solution in the unper-
turbed medium. However, these approaches are prone
to both numerical and systematic errors, which can arise
because the differential equation is stiff or because the
initial fields can not be specified with sufficient preci-
sion. These problems are especially important when the
equilibrium medium is absorbing, since any error in the
initial condition will blow up exponentially as they ap-
proach the interface.

Alternatively, in Sec. IV we will show that Eq. (25)
has analytic solutions for the main four depth profiles
discussed in Sec. II. With these solutions, we may derive
analytic expressions for the optical coefficients by directly
evaluating the field ratio Φs(0). Compared to numerical
solutions, analytic expressions make it easier to identify
the key parameters that control the coefficients. We may
then readily determine controlled approximations for the
optical coefficients that are valid in different limits of
these parameters. Finally, these analytic solutions may
also be used to validate numerical solutions in parameter
ranges that are numerically challenging.

IV. ANALYTIC SOLUTIONS

Here we derive analytic solutions to the wave equa-
tion for the photoconductivity depth profiles introduced
in Sec. II, derive expressions for the optical coefficients,
and discuss various limiting forms of these coefficients.
We treat the exponential model in Sec. IV A, the sat-
urable profile and the TPA profile in Sec. IV B, and the
combined TPA-saturable profile in Sec. IVC.

A. Exponential Profile

As we noted in Sec. I, the exponential profile is the de-
fault assumption for analyzing pump–probe spectroscopy
measurements. Multiple authors have discussed the so-
lutions to the wave equation for this profile and applied
it in different contexts [15, 25, 27–29]. Although our pri-
mary interest is in nonlinear photoconductivity profiles,
a thorough understanding of this linear profile is valu-
able for identifying signatures of nonlinearity, and we are
unaware of a systematic exploration of the solution in all
of its physical limits. Consequently, we review the solu-
tion here and discuss a variety of approximations to it
that are valid in different physical limits. This discussion
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will set the stage for a similar analysis of the nonlinear
profiles in Secs. IV B and IV C.

When expressed in terms of the relative permittivity,
the exponential profile has the form

ϵr(z) = n̄2 + ϱ2e−αz, (37)

where n̄ is the equilibrium refractive index and
ϱ2 = iχFF/(ωϵ0) is the photoinduced permittivity
change at the surface. Letting η2 = n̄2 − β2, the wave
equation for an s-polarized probe is

d2Us

dz2
+ k20(η

2 + ϱ2e−αz)Us = 0. (38)

Substituting k20η2 = −α2ν2/4, k20ϱ2e−αz = α2ξ2/4, we
can transform Eq. (38) into the Bessel equation [30,
Eq. 14.1.3.2],

ξ2
d2Ũs

dξ2
+ ξ

dŨs

dξ
+ (ξ2 − ν2)Ũs = 0, (39)

where Ũs[(2k0ϱ/α)exp(−αz/2)] = Us(z). The two lin-
early independent solutions to the above equation are [31]

Ũs(ξ) = C1J−ν(ξ) + C2Jν(ξ), (40)

which can be expressed in terms of the variables in
Eq. (38) as

Us(z) = C1J−2iηk0/α [(2k0ϱ/α)exp(−αz/2)]
+ C2J2iηk0/α [(2k0ϱ/α)exp(−αz/2)] . (41)

We can associate these solutions with waves traveling for-
ward and backward through the medium. In the limit
that the perturbation has fully decayed, αz → ∞, we can
use limξ→0 Jν (ξ) ∼ (ξ/2)ν/Γ (ν + 1) to recover the con-
ventional harmonic solutions to the wave equation for the
equilibrium response [32, Eq. 10.7.3],

lim
αz→∞

Us = K1e
iηk0z +K2e

−iηk0z. (42)

Note that the positive root in the harmonic solution is
associated with the negative order of the Bessel function
in Eq. (41), and vice versa.

1. Reflection and transmission amplitude

As we discussed in Sec. III B, we may write both r and
t for a perturbed medium in terms of the perturbation
parameter Σ, given in Eq. (35), which in turn depends on
complex field ratio, Φs(z = 0), defined in Eq. (27). For
the forward-traveling solution in Eq. (41), we have

Φs(0) = iϱ
J ′
−ν(ξ0)

J−ν(ξ0)
, (43)

where ξ0 = 2k0ϱ/α. Applying the recurrence relation [32,
Eq. 10.6.2]

J ′
ν(ξ) = Jν−1(ξ)− (ν/z)Jν(ξ) (44)

and substituting the result into Eq. (35), we obtain

Σ = −iJ−ν+1(ξ0)

J−ν(ξ0)

ϱ

n1 cos θ1 + n̄ cos θ̄2
. (45)

We can associate the quantities ν = 2ik0ηΛ and
ξ0 = 2k0ϱΛ with dimensionless ratios of the relevant
length scales of the problem. First, we can write
ν ∝ Λ/δη, where Λ is the pump attenuation length and
δη =

√
2/µ0σ̄ω has the form of the skin depth for the

probe in the equilibrium medium, with conductivity σ̄.
Second, we can write ξ0 ∝ Λ/δϱ, where δϱ =

√
2/µ0∆σsω

has the form of the skin depth for the probe in a ficti-
tious medium with conductivity ∆σs. We note here that
as defined, both δη and δϱ are complex, so they are not
skin depths, in the strict sense. Nonetheless, the associa-
tion provides useful intuition about the physical behavior
in different regimes of ν and ϱ, so we adopt it with this
caveat.

2. Typical parameter values

In Table I, we present the magnitude of ν and ξ0 for
several pump-probe experiments, along with σ̄ and ∆σs
at the probe frequency, the wavelengths of the pump and
probe fields, the static permittivity ϵs, and the pump
attenuation length Λ. We use n1 = 1 and θ1 = 0 to stan-
dardize the calculation for ν and ξ0. Several of the ex-
amples in Table I are from reports of photoinduced su-
perconductivity that show evidence of saturation, but as
we will see in Sec. IV B, these parameters are relevant for
the saturation profile, also. Since our purpose is to dis-
cuss qualitative trends in ν and ξ0, we do not account for
the systematic error in ∆σs that saturation may induce
in these experiments.

3. Limiting forms

While Eq. (45) is valid for all ν and ξ0, Table I shows
that their magnitudes are typically between 0.01 and 10.
Here, we derive approximations for r and t that span
these limits.

Weak perturbation limit. We associate this limit with
∆σs → 0, which implies δϱ =

√
2/(µ0∆σsω) → ∞. For

constant k0Λ, we also have ξ0 ∝ Λ/δϱ → 0. To calculate
the limiting form of Σ in this case, consider the Taylor
expansion of the Bessel function around ξ = 0,

Jν(ξ) =

(
ξ

2

)ν ∞∑
k=0

(−1)k
(ξ/4)2k

k!Γ(ν + k + 1)
. (46)

Retaining only the zeroth-order term in the series and
using the recurrence relation for the Γ-function,

Γ(ν + 1) = νΓ(ν), (47)
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TABLE I. Experimental parameters for various pump-probe measurements

Material Pump λ Probe λ σ̄ ∆σs ϵs Λ δη δϱ. |ν| |ξ0|
(µm) (µm) (Ω−1 cm−1) (Ω−1 cm−1) (µm) (µm) (µm)

YBa2Cu3O6.5
a 0.8 294 15− 10i 4 + 15i 4.5 0.2 19 9 0.05 0.05

LBCOb 0.8 300 2.2− 13i 1 + 6i 4.5 0.4 120 15 0.6 0.05
YBa2Cu3O6.5

a 1.42 294 15− 10i 1.1 + 7.2i 4.5 0.6 19 13 0.15 0.09
Auc 2.95 3.65 2790 + 31400i 137− 114i 7.24 0.02 0.02 0.7 1.15 0.09

YBa2Cu3O6.5
a 16 294 15− 10i 4 + 8i 4.5 0.7 19 12 0.2 0.1

LBCOb 2 300 2.2− 13i 0.06 + 1.4i 4.5 2.5 130 30 0.6 0.2
GaAsd 0.79 298 — 21 + 22i — 0.41 85 7 0.06 0.13
K3C60

e 7.3 190 240 + 350i −230 + 250i 5 0.22 1.45 1.65 0.31 0.28
YBa2Cu3O6.5

a 10 294 15− 10i 0.4 + 1i 4.5 2.4 19 32 0.5 0.15
YBa2Cu3O6

f 0.5 0.73 892− 91i −137 + 343i 4.5 0.01 0.14 0.01 2.43 1.23
(insulating)

BEDT-TTFg 8 200 168− 18i −108 + 215i 5 3 3.4 2 2.65 3.15

a Liu et al. [33]
b Casandruc et al. [34]
c Sielcken and Bakker [35]
d Beard et al. [36]
e Budden et al. [37]
f Sahota et al. [8]
g Buzzi et al. [38]

we can write the ratio of the Bessel functions in Eq. (45)
as

J1−ν(ξ0)

J−ν(ξ0)
≈ ξ0/2

1− ν
. (48)

Substituting Eq. (48) in Eq. (45), we obtain

lim
∆σs→0

Σ =
−ik0ϱ2Λ

(1− 2ik0n̄Λ) (n1 + n̄)

=
∆σsZ0Λ

(1− 2ik0n̄Λ) (n1 + n̄)
,

(49)

where we assume θ1 = θ2 = 0 and use ϱ2 = i∆σs/ωϵ0.
Substituting Eq. (49) in Eq. (33) and Eq. (34), we obtain

lim
∆σs→0

r =
n1 − n̄−∆σsZ0Λ/(1− 2ik0n̄Λ)

n1 + n̄+∆σsZ0Λ/(1− 2ik0n̄Λ)
, (50)

and

lim
∆σs→0

t =
2n1

n1 + n̄+∆σsZ0Λ/(1− 2ik0n̄Λ)
. (51)

Long-wavelength limit. We associate this limit
with k0Λ → 0, which implies both δη → ∞ and
δϱ → ∞ because δη, δϱ ∝ 1/

√
ω ∝ 1/

√
k0. Consequently,

ξ0 ∝ Λ/δϱ → 0 and ν ∝ Λ/δη → 0. In these limits, we
can neglect the term ν = 2ik0n̄Λ ∝ Λ/δη in Eq (49) to
obtain

lim
k0Λ→0

Σ =
−ik0ϱ2Λ
n1 + n̄

=
∆σsZ0Λ

n1 + n̄
. (52)

The reflection and transmission coefficients are then

lim
k0Λ→0

r =
n1 − n̄−∆σsZ0Λ

n1 + n̄+∆σsZ0Λ
(53)

and

lim
k0Λ→0

t =
2n1

n1 + n̄+∆σsZ0Λ
. (54)

Equation (54) often goes by the name of the Tinkham for-
mula, which Glover and Tinkham derived for far-infrared
transmission spectroscopy [39].

By retaining the first two terms of the series in Eq. (46)
and following a similar procedure to the one that led to
Eq. (48), we can derive the first correction to the long-
wavelength limit. This gives

J−ν+1(ξ0)

J−ν(ξ0)
=

ξ0/2

−ν + 1

[
1− ξ20/4

−ν+2

]
[
1− ξ20/4

−ν+1

] +O(ξ30). (55)

Substituting this expression in Eq. (45) and setting
Λ/δη → 0, we obtain

Σ =
∆σsZ0Λ

n1 + n̄

[
1 +

i

2
µ0∆σsωΛ

2

]
+ . . . , (56)

which includes a correction of order (Λ/δϱ)2 to the phase
shift.

High-photoconductivity limit. We associate this limit
with ∆σs → ∞, which implies δϱ → 0 and, in turn,
Λ/δϱ → ∞. We can deriive the limiting form of Eq. (45)
for this case cby considering the asymptotic limit of the
Bessel function,

lim
ξ→∞

Jν(ξ) =

√
2

πξ
cos

(
ξ − 1

2
νπ − 1

4
π

)
. (57)
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In this limit,

limξ0→∞
J−ν+1(ξ0)

J−ν(ξ0)
= lim

ξ0→∞
tan

(
ξ0 +

1

2
νπ − 1

4
π

)
≈ i.

(58)

Substituting Eq. (58) in Eq. (45), we obtain

lim
ξ0→∞

Σ =
ϱ

n1 + n̄
=

√
i∆σs/ωϵ0
n1 + n̄

. (59)

The expressions for r and t are

lim
ξ0→∞

r =
n1 − n̄−

√
i∆σs/ωϵ0

n1 + n̄+
√
i∆σs/ωϵ0

, (60)

and

lim
ξ0→∞

t =
2n1

n1 + n̄+
√
i∆σs/ωϵ0

. (61)

Short-wavelength or bulk limit. We associate this limit
with k0Λ → ∞, which implies the divergence of both the
order of the Bessel function, ν ∝ Λ/δη, and its argument,
ξ0 ∝ Λ/δϱ. To simplify Eq. (45) in this limit, it is conve-
nient to use the following identity [32, Eq. 10.10.1],

lim
k0Λ→∞

f =
J−ν+1(ξ)

J−ν(ξ)
(62)

=
1

−2νξ−1 −
1

−2νξ−1 −
1

−2νξ−1 − · · ·

(63)

=
1

−2νξ−1 − f
, (64)

which yields a quadratic for f with roots

f = −νξ−1 ±
√
ν2ξ−2 − 1. (65)

The negative root of this expression is unphysical, as it
corresponds to choosing the negative root of the photoex-
cited permittivity to obtain its refractive index. Choos-
ing the positive root and substituting into Eq. (45), we
obtain

lim
k0Λ→∞

Σ =

(√
n̄2 + i

∆σs

ωϵ0
− n̄

)
1

n1 + n̄

=
nex − n̄

n1 + n̄
,

(66)

where nex =
√
n̄2 + i∆σs/(ωϵ0) is the refractive index of

the photoexcited medium at the surface. Substituting
Eq. (66) into Eqs. (33) and (34), and simplifying, we
obtain

lim
k0Λ→∞

r =
n1 − nex

n1 + nex
(67)
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FIG. 4. Magnitude (a–c) and phase (d) of Σ for an exponen-
tial profile as a function of |∆σs|, for three values of σ̄ that
are displayed in (a–c) and indicated by the associated color or
grayscale in (d). Throughout, k0 = 0.01 m−1 and Λ = 1 µm.
The exact result for Σ in Eq. (45) is shown together with four
different limiting approximations, indicated in the legend of
(b) and discussed in the text. Markers in (d) show only the
limiting values of the phase given by the four approximations,
as indicated in that legend.

and

lim
k0Λ→∞

t =
2n1

n1 + nex
, (68)

which are simply the Fresnel reflection and transmission
amplitudes for a homogeneously medium with refractive
index nex.

Figure (4) shows the magnitude and phase of Σ as a
function of |∆σs|, along with the limiting forms described
above. Figure (4)(a)–(c) show the magnitude for differ-
ent values of σ̄, while Figure (4)(d) shows the phase for
the same values of σ̄ as in Figure (4)(a)–(c). When |∆σs|
is small, the weak-perturbation limit provides a good ap-
proximation to both the magnitude and phase of Σ, with
|Σ| ∝ |∆σs|.. When both |∆σs| and σ̄ are small, the long
wavelength limit provides a good approximation for |Σ|,
but arg(Σ) shows some discrepancy. As the skin depth
of the probe field decreases with increasing σ̄ in panels
(a)–(c), the parameter ν ∝ Λ/δη increases for constant
Λ, causing |Σ| to deviate from the long wavelength limit.

The behavior of |Σ| changes from |Σ| ∝ |∆σs| to
|Σ| ∝

√
|∆σs| as |∆σs| increases, with the transition re-

gion moving towards higher values of |∆σs| as σ̄ increases.
Physically, this crossover occurs when the skin depth
associated with the photoexcitation, δϱ ∝ 1/

√
∆σs, be-

comes comparable to Λ or δν ∝ 1/
√
σ̄, whichever is

smaller. In Fig. 4(a), where σ̄ is smallest, δν ≫ Λ and the
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transition with ∆σs occurs when δϱ ≈ Λ. In Fig. 4(c),
where σ̄ is largest, δν ≲ Λ, so the relevant comparison
becomes δϱ ≈ δν . In this case, the probe pulse is ef-
fectively sampling a uniformly excited region, since the
probe field is localized to the photoexcitation depth Λ,
and the bulk-limit approximation is good for all values
of ∆σs. Figure 4(d) shows that the phase of Σ is rel-
atively constant on either side of the transition region,
and that it matches the limiting approximations in all
cases except the long-wavelength limit, which requires
that both δν ≪ Λ and δϱ ≪ Λ. Although the phase error
is relatively small for σ̄ = 1 Ω−1 cm−1, where δν ≫ Λ, it
increases with σ̄ to exceed 0.5 when σ̄ = 104 Ω−1 cm−1,
where δν ≲ Λ. This discrepancy highlights the superi-
ority of the weak-perturbation approximation over the
more commonly used long-wavelength approximation.

B. Nonlinear profiles

Having thoroughly studied the properties of the optical
coefficients for the exponential photoconductivity profile,
we are now in a position to examine the nonlinear pro-
files that we introduced in Sec. II. We will start with
the saturable profile from Sec. II B and the TPA profile
from Sec. II C, then turn to the combined saturation-
TPA profile from Sec. IID. We show that the satura-
tion profile and the TPA profile are special cases of a
more general profile, introduced by Epstein nearly 100
years ago, which yields wave solutions that are described
by hypergeometric functions [23, 24, 40]. We also show
that the combined profile yields solutions described by
Heun functions, which appear in several other areas of
physics [32, 41].

1. General solutions for the saturable and TPA profiles

With some changes in notation to adapt it to our con-
text, we write the Epstein profile as

ϵr = n̄2 + ς2
e−α(z−z0)

1 + e−α(z−z0)
+ ϑ2

e−α(z−z0)

[1 + e−α(z−z0)]2
. (69)

We obtain the saturable profile, Eq. (4), with the substi-
tutions

ϑ = 0, ς2 = i∆σsat/(ωϵ0) eαz0 = F/Fsat, (70)

and we obtain the TPA profile, Eq. (9), with the substi-
tutions

ϑ2 = −i∆σTPA/(ωϵ0), ς2 = 0,

eαz0 = −(F/FTPA)/(1 + F/FTPA).
(71)

We may now solve the wave equation for both Eq. 4 and
Eq. (9) by solving it for Eq. (69) [23, 24, 40], then making
the substitutions in Eqs. (70) and (71), respectively.

To proceed with the solution, we substitute Eq. (69)
into the wave equation, Eq. (25), with the additional sub-
stitutions u = e−α(z−z0) = u0e

−αz, Ũs(u) = Us(z), and
κ = k0Λ, to put it in the form

u2
d2Ũs

du2
+ u

dŨs

du

+ κ2
[
η2 + ς2

u

1 + u
+ ϑ2

u

(1 + u)2

]
Ũs = 0. (72)

This has the form of Riemann’s differential equation
with thee regular singularities at u = 0,−1,∞ [32,
Eq. 15.11.1]. For the singularity at u = 0, the two in-
dependent solutions for Us are

Us1(z) = ua(1 + u)bF (a+ b+ c, a+ b− c; 1 + 2a;−u) (73)

Us2(z) = u−a(1 + u)bF (−a+ b+ c,−a+ b− c; 1− 2a;−u), (74)

where

a2 = −κ2η2, b(b− 1) = −κ2ϑ2,
c2 = −κ2(η2 + ς2),

(75)

and F is the hypergeometric function. To identify the
forward-travelling solution, we evaluate the limit z → ∞,
which corresponds to u→ 0. Choosing the root a = iκη,
the asymptotic solutions are then

lim
z→∞

Us1(z) = ua = e−ik0η(z−z0), (76)

lim
z→∞

Us2(z) = u−a = eik0η(z−z0), (77)

and we see that Eq. (74) for Us2 is the forward-travelling
solution.

To determine the perturbation parameter Σ, we sub-
stitute Eq. (74) in Eq. (27),

Φ(0) = − i

κ

{
a− bu0

u0 + 1
+ u0

(a− b)2 − c2

1− 2a
ψ(0)

}
, (78)

where

ψ(0)=
F (−a+b+c+1,−a−b−c+1;−2a+2;−u0)

F (−a+b+c,−a+b−c;−2a+1;−u0)
. (79)
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This enables us to write

Σ=
i

k0Λ(nicosθi+η)

{
bu0
u0+1

−u0
(a−b)2−c2

1−2a
ψ(0)

}
. (80)

To obtain the optical coefficients for the saturable and
TPA profiles, we can substitute Eqs. (70) and (71), re-
spectively, into Eq. (80). We then substitute Eq. (80) into
Eqs. (33) and (34) to obtain r and t, respectively. This
completes the general solution for the optical coefficients
for these two profiles.

2. Long-wavelength approximations for the saturable and
TPA profiles

The expression for Σ in Eq. (80) is considerably more
complex than the equivalent expression in Eq. (45) for
the exponential profile, and we have not explored its lim-
its at the same level of detail. Nonetheless, we can derive
expressions for the long-wavelength limit, κ = k0Λ → 0,
which are equivalent to ones we derived with more phys-
ical arguments in Ref. [6]. As we indicated in Table I,
experiments are commonly in this limit, so exact results
that describe it are valuable.

To proceed, we note that for κ→ 0, the parameters of
Eq. (80) become a = iκη, b = κ2ϑ2, and c = iκ

√
η2 + ς2.

We also have [32, Eq. 15.2.1]

lim
κ→0

F (−a+ b+ c,−a+ b− c; 1− 2a;−u0)

= 1− (a− b)2 − c2

1− 2a
u0 = 1 (81)

and [32, Eq. 15.4.1]

lim
κ→0

F (−a+ b+ c+ 1,−a+ b− c+ 1; 2− 2a;−u0)

= F (1, 1; 2;−u0) = u−1
0 ln(1 + u0). (82)

Substituting in Eq. (80), we get

lim
κ→0

Σ=
−iκ

(nicosθi+η)

[
ς2ln

(
1+e−αz0

)
+
ϑ2eαz0

1+eαz0

]
, (83)

which we can use to determine Σ for both the saturable
profile and the TPA profile.

Substituting Eq. (70) for the saturable profile, this be-
comes

lim
k0Λ→0

Σ =
∆σsatZ0Λ ln(1 + F/Fsat)

n1cosθ1 + η
. (84)

At normal incidence, this yields

lim
κ→0

r =
n1 − n̄−∆σsatΛZ0 ln(1 + F/Fsat)

n1 + n̄+∆σsatΛZ0 ln(1 + F/Fsat)
(85)

and

lim
κ→0

t =
2n1

n1 + n̄+∆σsatΛZ0 ln(1 + F/Fsat)
. (86)

Alternativelly, substituting Eq. (71) for the TPA profile
yields

lim
k0Λ→0

Σ =
∆σTPAΛZ0F/FTPA

n1 cos θ1 + η
, (87)

which for normal incidence gives

lim
κ→0

r =
1− n̄−∆σTPAΛZ0F/FTPA

1 + n̄+∆σTPAΛZ0F/FTPA
(88)

and

lim
κ→0

t =
2n1

n1 + n̄+∆σTPAΛZ0F/FTPA
. (89)

As we discussed in Ref. [6], the optical coefficients for
the saturable profile have a logarithmic dependence on
fluence. This is because as the conductivity saturates
near the surface, the depth of the saturated region grows
logarithmically, increasing its effective thickness. By con-
trast, the optical coefficients for the TPA profile are pro-
portional to the fluence in the long wavelength limit. In
this case, although the surface photoconductivity has a
superlinear dependence on fluence, there is a compen-
sating effect on the effective thickness of the profile [6].
Consequently, the optical response with a TPA nonlin-
earity is indistinguishable from that of the exponential
profile.

C. Combined Profile

In this section, we derive the solutions to the wave
equation in the presence of both TPA/ESA and satura-
tion. The wave equation is

d2Us

dz2
+ k20

[
η2 + i

∆σ(z, F ;Fsat, FTPA)

ωϵ0

]
Us = 0, (90)

where ∆σ(z, F ;Fsat, FTPA) is given in Eq. (11). Substi-
tuting u = e−αz and Ũs(u) = Us(z), we can put Eq. (90)
in the form

d2Ũs

du2
+
1

u

dŨs

du
+

[
κ2η2

u2
+

Q(F )

u(u−u+)(u−u−)

]
Ũs=0, (91)

where κ = k0Λ,

Q(F ) = κ2χFFTPA
(FTPA − F )

F
(92)

and u± correspond to the solutions of

u2 + [(FTPA/Fsat − 2) (1 + FTPA/Fsat)]u

+ (FTPA/Fsat + 1)
2
= 0, (93)

u± = (1 + FTPA/F )
[
(1− FTPA/2Fsat)

± (FTPA/2Fsat)
√
1− 4FTPA/Fsat

]
. (94)
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Equation (91) has four regular singularities at 0, u±, and
∞, which enables us to solve it by transforming it into
the Heun differential equation [32, 41],

d2w

dζ2
+

(
γ

ζ
+

δ

ζ − 1
+

ϵ

ζ − a

)
dw

dζ

+
αβζ − q

ζ(ζ − 1)(ζ − a)
w = 0, (95)

with

γ + δ + ϵ = α+ β + 1 (96)

and singularities at 0, 1, a, and ∞
To proceed with the transformation, we solve the in-

dicial equation at each of the singularities to obtain
ρ = ±iκη for the singularities at 0 and ∞, and ρ = {0, 1}
for the singularities at u±. We can then move the sin-
gularity at u+ to 1 by changing variables to ζ = u/u+,
Ûs(ζ) = Ũs(u)

d2Ûs

dζ2
+

1

ζ

dÛs

dζ
+

[
κ2η2

ζ2
+

Q(F )/u+
ζ(ζ − 1)(ζ − a)

]
Ûs = 0, (97)

which also moves the singularity at u− to

a =
u−
u+

=

(
1− FTPA

2Fsat
− FTPA

2Fsat

√
1− 4Fsat

FTPA

)2

. (98)

Lastly, we write Ûs = ζ−iκηw(ζ), which transforms
Eq. (97) into the standard form given in Eq. (95),

d2w

dζ2
+

1− 2iκη

ζ

dw

dζ
+

Q(F )/u+
ζ(ζ − 1)(ζ − a)

w = 0. (99)

with γ = 1 − 2iκη, δ = 0, ϵ = 0, and q = Q(F )/u+.
To specify α and β, we solve the incidial equation for
the singularity at 0 to get ρ = {0, 2iκη} and for the
singularity at ∞ to get ρ = {0,−2iκη}. The constraint
in Eq. (96) then requires that α = 0 and β = −2iκη.

With the parameters of the standard form established,
we may write the solution to Eq. (91) in terms of the
local Heun function [32, 41],

Ûs = ζ−iκηHl(a, q; 0,−2iκη, 1− 2iκη, 0, ζ). (100)

We can confirm that this is the forward-traveling solution
by evaluating the limit z → ∞, equivalent to ζ → 0 [32,
Eq. 31.3.1],

lim
ζ→0

Ûs = ζ−iκη = eik0ηz. (101)

In principle, we may now obtain the optical coefficients
for the combined saturation-TPA profile in the same way
that we have for the exponential, saturable, and TPA
profiles. In practice, this is much more challenging in this
case than it is with the others. Substituting Eq. (100)
into Eq. (27) does not readily yield a form that allow
further progress, so we will defer further development in
this direction until a later investigation. We do note,
however, that we are unaware of any other example of a
stratified medium profile with wave solutions described
by Heun functions, so the one presented here may be
of interest to others who study the properties of these
functions.

V. CONCLUSION

We have described a general framework for determin-
ing the optical coefficients of a photoexcited medium,
and we applied it to specific examples of photoconduc-
tivity depth profiles that are likely to occur in experi-
ments. We discussed several different profiles, including
ones that show a nonlinear dependence on incident flu-
ence. In addition to profiles that have been discussed
previously, we developed a new, two-parameter family
that describes how a medium will respond when satura-
tion and TPA nonlinearities are present simultaneously.
We showed that the wave equation for s-polarized probe
waves has analytic solutions for many of the profiles that
we discussed, one of which appears to have not been dis-
cussed previously. We derived approximations to these
solutions and analyzed their limits of validity in terms of
the natural length scales involved in pump-probe experi-
ments. In subsequent work, we will discuss how one may
use the results presented here to improve the uncertainty
in pump-probe measurements of the surface conductivity.
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